5,101 research outputs found

    An Image Based Feature Space and Mapping for Linking Regions and Words

    No full text
    We propose an image based feature space and define a mapping of both image regions and textual labels into that space. We believe the embedding of both image regions and labels into the same space in this way is novel, and makes object recognition more straightforward. Each dimension of the space corresponds to an image from the database. The coordinates of an image segment(region) are calculated based on its distance to the closest segment within each of the images, while the coordinates of a label are generated based on their association with the images. As a result, similar image segments associated with the same objects are clustered together in this feature space, and should also be close to the labels representing the object. The link between image regions and words can be discovered from their separation in the feature space. The algorithm is applied to an image collection and preliminary results are encouraging

    Salient Regions for Query by Image Content

    No full text
    Much previous work on image retrieval has used global features such as colour and texture to describe the content of the image. However, these global features are insufficient to accurately describe the image content when different parts of the image have different characteristics. This paper discusses how this problem can be circumvented by using salient interest points and compares and contrasts an extension to previous work in which the concept of scale is incorporated into the selection of salient regions to select the areas of the image that are most interesting and generate local descriptors to describe the image characteristics in that region. The paper describes and contrasts two such salient region descriptors and compares them through their repeatability rate under a range of common image transforms. Finally, the paper goes on to investigate the performance of one of the salient region detectors in an image retrieval situation

    Physical constraints on the coefficients of Fourier expansions in cylindrical coordinates

    Get PDF
    It is demonstrated that (i) the postulate of infinite differentiability in Cartesian coordinates and (ii) the physical assumption of regularity on the axis of a cylindrical coordinate system provide significant simplifying constraints on the coefficients of Fourier expansions in cylindrical coordinates. These constraints are independent of any governing equations. The simplification can provide considerable practical benefit for the analysis (especially numerical) of actual physical problems. Of equal importance, these constraints demonstrate that if A is any arbitrary physical vector, then the only finite Fourier terms of A_r and A_θ are those with m=1 symmetry. In the Appendix, it is further shown that postulate (i) may be inferred from a more primitive assumption, namely, the arbitrariness of the location of the cylindrical axis of the coordinate system

    A Fully Unsupervised Texture Segmentation Algorithm

    No full text
    This paper presents a fully unsupervised texture segmentation algorithm by using a modified discrete wavelet frames decomposition and a mean shift algorithm. By fully unsupervised, we mean the algorithm does not require any knowledge of the type of texture present nor the number of textures in the image to be segmented. The basic idea of the proposed method is to use the modified discrete wavelet frames to extract useful information from the image. Then, starting from the lowest level, the mean shift algorithm is used together with the fuzzy c-means clustering to divide the data into an appropriate number of clusters. The data clustering process is then refined at every level by taking into account the data at that particular level. The final crispy segmentation is obtained at the root level. This approach is applied to segment a variety of composite texture images into homogeneous texture areas and very good segmentation results are reported

    Effects of bubbles on the electrochemical behavior of hydrogen-evolving Si microwire arrays oriented against gravity

    Get PDF
    The size-distribution, coverage, electrochemical impedance, and mass-transport properties of H₂ gas-bubble films were measured for both planar and microwire-array platinized n⁺-Si cathodes performing the hydrogen-evolution reaction in 0.50 M H₂SO₄ (aq). Inverted, planar n⁺-Si/Ti/Pt cathodes produced large, stationary bubbles which contributed to substantial increases in ohmic potential drops. In contrast, regardless of orientation, microwire array n⁺-Si/Ti/Pt cathodes exhibited a smaller layer of bubbles on the surface, and the formation of bubbles did not substantially increase the steady-state overpotential for H₂ (g) production. Experiments using an electroactive tracer species indicated that even when oriented against gravity, bubbles enhanced mass transport at the electrode surface. Microconvection due to growing and coalescing bubbles dominated effects due to macroconvection of gliding bubbles on Si microwire array cathodes. Electrodes that maintained a large number of small bubbles on the surface simultaneously exhibited low concentrations of dissolved hydrogen and small ohmic potential drops, thus exhibiting the lowest steady-state overpotentials. The results indicate that microstructured electrodes can operate acceptably for unassisted solar-driven water splitting in the absence of external convection and can function regardless of the orientation of the electrode with respect to the gravitational force vector

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    Enhanced image annotations based on spatial information extraction and ontologies

    No full text
    Current research on image annotation often represents images in terms of labelled regions or objects, but pays little attention to the spatial positions or relationships between those regions or objects. To be effective, general purpose image retrieval systems require images with comprehensive annotations describing fully the content of the image. Much research is being done on automatic image annotation schemes but few authors address the issue of spatial annotations directly. This paper begins with a brief analysis of real picture queries to librarians showing how spatial terms are used to formulate queries. The paper is then concerned with the development of an enhanced automatic image annotation system, which extracts spatial information about objects in the image. The approach uses region boundaries and region labels to generate annotations describing absolute object positions and also relative positions between pairs of objects. A domain ontology and spatial information ontology are also used to extract more complex information about the relative closeness of objects to the viewer

    Mind the Gap: Another look at the problem of the semantic gap in image retrieval

    No full text
    This paper attempts to review and characterise the problem of the semantic gap in image retrieval and the attempts being made to bridge it. In particular, we draw from our own experience in user queries, automatic annotation and ontological techniques. The first section of the paper describes a characterisation of the semantic gap as a hierarchy between the raw media and full semantic understanding of the media's content. The second section discusses real users' queries with respect to the semantic gap. The final sections of the paper describe our own experience in attempting to bridge the semantic gap. In particular we discuss our work on auto-annotation and semantic-space models of image retrieval in order to bridge the gap from the bottom up, and the use of ontologies, which capture more semantics than keyword object labels alone, as a technique for bridging the gap from the top down
    corecore